Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1713: 464569, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38091845

RESUMO

In steam cracking, upstream pyrolysis oil hydroprocessing, and in many downstream processes, olefinic content is key to assess process performance and process safety risk associated with highly exothermic reactions. When looking to plastic pyrolysis oils as a potential feedstock, as well as downstream products such as pyrolysis gasoline (pygas), these materials contain unsaturated hydrocarbons which are not present in fossil feedstocks. Pygas is a product of pyrolysis and exhibits a large number of chemical structural similarities with plastic pyrolysis oils, especially in terms of olefins structure. Quantification of the unsaturation content (olefins and di-olefins) is extremely important in industry, hence the focus of this manuscript. Detailed hydrocarbon analysis with flame ionization detection is inadequate to fully characterize the hydrocarbon composition of such samples, especially when peaks are closely eluting, or even co-eluting. In this study, the gas chromatography coupled to vacuum ultraviolet (GC-VUV) detection method previously described for the analysis of liquid hydrocarbon streams1 and plastic pyrolysis oils2 has been compared with comprehensive gas chromatography (GC × GC) and the industry standard for olefin quantification (i.e., bromine number titration). Although based on different methodologies, a correlation between the olefin content obtained from GC-VUV and the bromine number titration method is hereby presented.


Assuntos
Alcenos , Gasolina , Gasolina/análise , Alcenos/análise , Bromo , Vácuo , Pirólise , Cromatografia Gasosa/métodos , Óleos/análise , Hidrocarbonetos/análise
2.
ACS Appl Mater Interfaces ; 10(27): 23174-23186, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29882409

RESUMO

Nanodroplets in inverse miniemulsions provide a colloidal confinement for the crystallization of ammonium phosphomolybdate (APM), influencing the resulting particle size. The effects of the space confinement are investigated by comparing the crystallization of analogous materials both in miniemulsion and in bulk solution. Both routes result in particles with a rhombododecahedral morphology, but the ones produced in miniemulsion have sizes between 40 and 90 nm, 3 orders of magnitude smaller than the ones obtained in bulk solution. The catalytic activity of the materials is studied by taking the epoxidation of cis-cyclooctene as a model reaction. The miniemulsion route yields APM particles catalytically much more active than analogous samples produced in bulk solution, which can be explained by their higher dispersibility in organic solvents, their higher surface area, and their higher porosity. Inorganic phosphate salt precursors are compared with organic phosphate sources. APM nanoparticles prepared in miniemulsion from d-glucose-6-phosphate and O-phospho-dl-serine yield a conversion in the epoxidation reaction of more than 90% after only 1 h, compared to 30% for materials prepared in bulk solution. In addition, the catalysts prepared in miniemulsion display a promising recyclability.

3.
Nanotechnology ; 28(36): 365603, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28644821

RESUMO

The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.

4.
ACS Appl Mater Interfaces ; 8(39): 26275-26284, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27611714

RESUMO

Organic-inorganic hybrid nanoparticles are prepared by free-radical copolymerization of methyl methacrylate (MMA) with the structurally well-defined methacrylate-functionalized zirconium oxocluster Zr4O2(methacrylate)12. The polymerization process occurs in the confined space of miniemulsion droplets. The formation of covalent chemical bonds between the organic and the inorganic counterparts improves the distribution of the guest species (oxoclusters) in the polymer particles, overcoming problems related to migration, leaching, and stability. Because of the presence of a high number of double bonds (12 per oxocluster), the oxoclusters act as efficient cross-linking units for the resulting polymer matrix, thus ruling its swelling behavior in organic solvents. The synthesized hybrid nanostructures are applied as heterogeneous systems in the catalytic oxidation of an organic sulfide to the corresponding sulfoxide and sulfone by hydrogen peroxide, displaying quantitative sulfide conversion in 4-24 h, with overall turnover numbers (TON) up to 8000 after 4 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...